【令和3年度(午前)】第一種電気工事士《筆記試験》問3

2021年度(令和3年度)午前
当サイトはアフェリエイト広告を利用しています。
スポンサーリンク

問題

定格電圧100V,定格消費電力1kWの電熱器の電熱線が全長の10%のところで断線したので,その部分を除き,残りの90%の部分を電圧100Vで1時問使用した場合,発生する熱量[kJ]は。
ただし,電熱線の温度による抵抗の変化は無視するものとする。

答え

イ.2900 

ロ.3600

ハ.4000

ニ.4400

『出典:令和3年度第一種電気工事士筆記試験【午前】(問3)』

スポンサーリンク

解説

正解は「ハ.4000」です。

この問題のポイントは、断線前後の抵抗値の変化です。抵抗値がどう変化するかに注目しましょう。

ボルベア
ボルベア

電熱線の全長が短くなったら、抵抗値はどうなるかな?

解き方

通常時の熱量を考える

まずは断線していない状態での熱量を考えます。

熱量をH[J]とすると次の式が成り立ちます。

\(H=Pt[J]~~~~・・・①\\~~~~=\Large{\frac{V^{2}}{R}}\normalsize{t}[J]・・・②\)

Pは消費電力、tは時間[s]を表します。時間については、問題では1時間なので秒にすると3600[s]となります。これらを式①に代入すると、次のようになります。

断線前の熱量をH1とします。

\(H_1=Pt[J]\\~~~~~=1\times10^{3}\times3600[J]\\~~~~~=3600[kJ]\)

断線後の熱量を求める

断線前の熱量H1は、式②とも同じになり、次の式が成り立ちます。

\(H_1=\Large{\frac{V^{2}}{R}}\normalsize{t}\\~~~~~=3600[kJ]\)

この式から断線後に変化するのは抵抗Rです。全長が90%になるので、抵抗値も90%となります。

これらから断線後の熱量をH2とすると次の式が成り立ちます。

\(H_2=\Large{\frac{V^{2}}{0.9R}}\normalsize{t}\\~~~~~=\Large{\frac{V^{2}}{R}}\normalsize{t\times}\Large{\frac{1}{0.9}}\normalsize{[J]・・・③}\)

式③の\(\Large{\frac{V^{2}}{R}}\normalsize{t}\)の部分は\(H1\)と同じなので、代入するとH2を求められます。

\(H_2=\Large{\frac{V^{2}}{R}}\normalsize{t\times}\Large{\frac{1}{0.9}}\\~~~~~=H_1\times\Large{\frac{1}{0.9}}\\~~~~~=\Large{\frac{H_1}{0.9}}\\~~~~~=\Large{\frac{3600}{0.9}}\\~~~~~=4000[kJ]\)

注意

消費電力PはI2Rでも求められます。しかしこの式を使うと、抵抗が0.9RとなるのでH1×0.9となり誤った答えになるので注意しましょう。

問題では、断線前後の電流Iの変化は明記されていません。なので明記されている電圧を使用して導きましょう。

コメント